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Abstract—To overcome the lack of a more general method for free vibration analysis of trapezoidal
plates, a computationally efticient and highly accurate Rayleigh—Ritz approach with the newly-
developed orthogonal plate functions is proposed to solve these problems with any combination
of clamped, simply-supported and free edge support conditions. The deflection of the plate is
approximated by a set of two-dimensional orthogonal plate functions, generated using the Gram-
Schmidt procedure, which expresses the entire plate domain into two implicitly related variables.
In the present paper, the cffects of the fibre orientation on the vibrational behaviour of the plates
are considered. The numerical results for isotropic and anisotropic trapezoidal plates are presented.
Where possible, the numerical results are verified with other existing values in the literature.
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NOTATION

side of plate

height of plate

coetlicient

flexural rigidity = ER'/12(1 —v?)

bending and wisting rigidities of orthotropic plate
Young's moduli parallel and perpendicular to the fibres
generating function

shear modulus of elasticity

shear modulus of elasticity

thickness of plate

number of terms

bending moment perpendicular to § and n axes
twisting moment perpendicular to £ axis
bending and twisting moment perpendicular to a direction
cos 0

sin 0

shear force perpendicular to € and n axes
shear force perpendicular to n direction
maximum kinetic cnergy

maximum strain energy

deflection function

Cartesian coordinates

Kronecker delta function

weighting function

orthogonal plate function

cocfficient

x/a

yle

nondimensional frequency parameter
Poisson’s ratio

edge’s function

angular frequency of vibration

product of terms

angle of fibre orientation

greatest integer function.
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[. INTRODUCTION

Excellent reviews of Leissa (1969, 1977, 1981) show that extensive studies have been carried
out on the free vibration of rectangular plates ; however, very little has been accomplished
on plates with other geometrical shapes. In particular, there is little information available
for trapezoidal plates. This may be due to the difficulty in forming a simple and adequate
deflection function which can apply to the entire plate domain and satisfy the boundary
conditions. More research work is needed in this area since such structural elements are
commonly encountered in modern technology. The aim of the present paper is to propose
a general energy approach using newly developed orthogonal plate functions to solve
problems in this area.

Virtually no exact solutions exist for the problem of the trapezoidal plate. not even for
the case when all edges are simply-supported. One of the earliest paper by Klein (1955)
has reported the fundamental frequency of a simply-supported trapezoidal plate using the
collocation method. After that, Chopra and Durvasula (1971, 1972) have investigated
the vibration characteristics of simply-supported, symmetric and unsymmetric trapezoidal
plates. The Galerkin method is applied with the deflection surface expressed in terms of the
Fourier sine series in transformed coordinates. This method is only applicable to plates
with simply-supported boundaries. Orris and Petyt (1973) used the finite element method
with the quadrilateral plate bending element to obtain frequencies and nodal patterns for
completely clamped and simply-supported symmetrical trapezoidal plates. The upper and
lower bounds for the first two frequencies of tully-clamped trapezoidal plate were reported
by Kuttler and Sigillito (1981). A matrix oricnted numcrical method has been developed
by Srinivasan and Babu (1983) for the analysis of cantilevered quadrilateral plates. Most
recently, Saliba (1986, 1988) has adopted the superposition techniques developed by Gor-
man (1983) to study the tree vibration of simply-supported and clamped symmetrical
trupezoidal plates,

In previous papers (Liew ef ¢f., 19894, b) a sct of two-dimensional orthogonal plate
functions was applied to study the free vibration analysis of triangular and rectangular
plates. The present paper further extends the potential of the very cflicient and highly
accurate numerical method to study transverse vibration of trapezoidal plates with different
combinations of clamped, simply-supported and free edge support conditions. [t is necessary
to investigate the vibrational characteristics of trapezoidal plates with different edge support
conditions so as to further understand their structural dynamic behaviour and to provide
additional design information for this type of plates.

2. DEFLECTION FUNCTION

For convenience, the normalized variables are introduced
E=xju; n=yfc ()

where x and y are the rectangular coordinates, « is the side of the plate and ¢ is the height
of the plate.
The function chosen to represent the deflection W(E, i) is given by

W =3 Chldm (2)

Pt

where 1 is the total number of terms, and C; is the unknown coctlicient to be minimized
in the Rayleigh-Ritz procedure. The two-dimensional orthogonal plate functions ¢(<. n7)
in eqn (2) are generated using the Gram-Schmidt recurrence formula (Liew ef al., 19894,
b) and are given as
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The generating functions f,,(£, n), as seen in eqn (3), are chosen to ensure that the higher
order members in the set of orthogonal plate functions satisfy the geometrical boundary
conditions and to reach faster convergence for the solutions. These generating functions
Jn(E. n) are determined by the following steps:

Let

r=/m-17 4

t=(m-1)—r. (5

If ¢ ts even. then
s=t/2; 0<s<r (6)
Ju(En) =& @)

If ¢ is odd, then
s=(=1)/2; 0<s<r—1 (®)
LaGom) =&y 9

[ Tinegn (4) denotes the greatest integer function.
The cocflicient ¢, ; in egn (3) are obtained by multiplying appropriate orthogonal plate
functions ¢,(, ) by both sides of eqn (3) and making use of the orthogonality condition,

fjt:(é. meo(&, M, (&, n) d& dn = 9,,. (10)

The coetlicients ,,,; in eqn (3) become

Jffm(é‘ me(C. M (S, mei(S,n) dS dy

lpm.i = * (l l)

,”"(é‘ ny$l(&,n) dé dy

where d;, is the Kronecker delta, e(&, n) is the weighting function and the integration is
carried out over the entire plate domain. The weighting function is used to account for the
thickness variation in the geometry which is taken as unity in the present analysis since
plates with only uniform thickness are considered.

The starting function ¢,(&, ) mentioned in eqn (3) appliced to a trapezoid is given by

(bl(é"’) = n (pn(é¢") (‘2)

n= |

where [T denotes the product of terms, n is the number of sides. and ¢(&. n) is the edge
function which is obtained according to the individual edge support conditions. A detailed
procedure of forming ¢(Z. n) is given below :
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{(a) for simply-supported edge

—a atedge{ =a

oE. ) ={n—c atedgen =c¢ (13)
n—mi—d atedgen=ms+d

(b) for clamped edge

(i—a)° atedge i =a
o) ={n=0)’ atedgen = ¢ (14)
(n—mi—d)* atedgen=mi+d and

(c) for free edge
o) = 1. (15)

3. BOUNDARY CONDITIONS
The starting function ¢ (&, n) is chosen to satisfy at least the geometrical boundary
conditions of the plate. Better convergence is achieved if ¢ (&, 1) also satisfies the natural
boundary conditions. The geometrical boundary conditions and natural boundary con-
ditions for different support edges are given as follows (Timoshenko, 1970) :

(a) for simply-supported edge

(S =0 (16)
M, = Mni=2M n.n,+Mnl =0 (17)
where
n: =cos( (18)
n, = sin 0, (19)
(b) for clamped edge
(S =0 (20)
A = 2 z b (E
oS _ " ('f/?,'(f‘ n) +n, e (Sm) _ 0 and (21)
on Y08 on
(c) for free edge
M,=0 (22)
. oM,
l/n= n~‘~”=0 (23)
Yy
where
Q.= Q.‘"»f +Q7”v (24)

M, =M. (n;—n)+(M.—M)n.n,. (25)
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Fig. 1. Geometry of trapezoidal plate.

4. METHOD OF ANALYSIS

The approximate solutions for free vibration of a thin trapezoidal plate, shown in Fig.
1. can be derived using Rayleigh's principle. The maximum strain and kinetic energies of

the anisotropic plate are given by
<0WVOWV.+DR anv3+40“ 1wy
aE: on?  \an? a‘c? \o&on

L[ D (2w 2D,
L"m.u = ac e Ar2 + - 3
a oq a“¢

aD (W W\ 4D, [OPW W ;
+ + 00 Ay s dédn (26)

a’c \ 0& Doy ac’ \ dn” 0idn

o,

and

T, = ‘phacw)® Jj W&, n) dEdn @n

where p is the material density, A is the plate thickness and o is the angular frequency of
vibration.

The bending stiffnesses D,; of the plate can be expressed in terms of the orthotropic
elastic constants Q,, along the principal axis of orthotropy as follows:

Dy, =@, cos® f+2(Q 1 +2Q4) sin® fcos® f+Q,. sin* § (28)
Dy = Q@ sin* f+2(Q 1y +2Q.,) sin® fcos” f+Q,; cos* f (29)
Dy = (Q1+Q::—4Q,) sin® fcos® f+ Q. (sin* f+cos* f) 30

Dig=(Q1—Qi2~2Qsinf cos’ B+(Q1:—Q2:+20¢) sin’ pcos f 3hH
Dy =(Q11 —Q12—20Q¢0) sin’ Bcos f+(Q12—Q2:4+20) sinﬂcos’ B (32)
Do = (@11 + Q212012 —2Q0) sin® fcos® f+Q,,(sin® f+cos* ) 33

where



194 K. M. Liew and K. Y. Lam

EM:’
Qn = By (34
0,; = uEh (35)
T 12(1=vivyy)
E.h*
O = i =y eo
G,
Qs =5 (37)
VI:EI =v:£,, (38)

in which f is the angle of fibre orientation with respect to the ¢ axis shown in Fig. 1, E,
and E, are the Young’s moduli parallet and perpendicular to the fibres respectively, v, and
v, are the corresponding Poisson’s ratios, and G,; is the shear moduius of elasticity.

Substituting eqn (2) into egqns (26) and (27) and minizing the Rayleigh quotient with
respect to the undetermined coefficients C,

E

o |[{]2u]@ T Coem|  20::|3* T Colem & T Caem)

Py K] i . 33 i=t it
oCi] )| e T @ R o
D, o* Z Chi(&.n) 4D, a* Z Chi(&.m)
S X S St Yo N B
on? &0y
+4Dm o* Z Coé.m ot Z Cidi(,n)
3 i=t fw=]
LT o€
4D, | 02 Y. Cip(E,n) 07 3 Cid (&,
+ acis ’; A (N)] ’; (& n) dé dy
! on’ aen |
d R .
— | pha’ | | 3 Ci(E.m) dEdn | =0, (39)
(’Cl i
leads to the governing eigenvalue equation
SIK,—iM,)C =0 (40)
where
| )
Ky = ~———=[D\\Py+2'D1;,Q0,;+22°D\2(R,; +5,)

D]]Dﬂw

+472065T51+21016(U1,+ Vi/‘)+2a}D26(WU+le)] 41

; 2.4
izw; g:a/(’ (42)

\/bHDH
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M, = j' J:Mi mé;(&.n) dS dn (43)

(a2 &°
P, = ";éﬁ i "Z‘j ) g gy (44)

-

[220.(E.n) 33 ¢;(<, n)

Q;= o 4G dn 49)
_ i a Qb(s,'?) a ¢;(§ ’7)
R, = 17 ar FrR dé dn (46)
_”%¢uma¢«m
Si= ) TaE T “
-V 2
I, = IS BN 4o g 48)

JJ & o&an

k]

_ Fazd’i(‘f"l) 62@(5"?)
Uii - JJ 562 655"} dé d’; (49)

k]

(07¢,(C.n) 9*¢(C, m 4

Vl! = J 060’] T éé:‘-—" ‘*s d'] (50)
2%, a?
W,,—” <1>(<f n) «ggﬂm dc dn s1)

14 1402
X, =-”«7 P (E ) 32,(E, 1) 4 dn. (52)

dédn n?

Equation (40) yields an eigenvalue determinant, the zeros of which give the natural fre-
quencies of the plate. Back substitution yields the coefficient vectors ; substitution of these
coeflicient vectors into eqn (2) gives the mode shapes of the plate.

5. RESULTS AND DISCUSSION

The numerical calculations for the natural frequencies using the proposed method are
carried out for six different combinations of edge supported trapezoidal plates, namely

(i) four edges simply-supported (S-S-5-S),
(ii) four edges fully-clamped (C-C-C-C),
(iii) one edge clamped and three edges simply-supported (C-S-8-8),
(iv) two opposite edges clamped and the other two simply-supported (C-S-C-S),
(v) cantilevered (C-F-F-F) and
{vi) one edge clamped, two opposite edges simply-supported and one edge free
(C-S-F-8).

The symbolism C-S-F-§, for example, identifies a trapezoidal plate with edges
clamped, simply-supported, free and simply-supported ; start counting anticlockwise from
the base of the trapezoidal plate. The stiffness properties for the boron—epoxy are given in
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Table 1. Matenal properties of umdirectional composite

Major elastic Minor elastic Shear modulus
modulus. £, modulus. £, Gy, Major Potsson’s
Material (GPuw) (GPa) (GPa) ratio. v,»
Isotropic 1.0 1.0 0.385 0.30
Boron-epoxy 204 18.50 5.59 0.23

Table 1. The obtained natural frequencies for the anisotropic plate are expressed in terms
of the nondimensional frequency parameters (/4"

N e (53)
The anisotropic case can be simplified to isotropic case by setting

via=vy, =030 (54)
Pu=Du=0= (55)

12{1 —¥)"
Dy = 1=-v)D {(56)

and the nondimensional frequency parameter \/;}.’ becomes
Vi = “;‘: JohiD. (57)

5.1, Convergence of solution

The Rayleigh -Ritz energy approach gives an upper-bound solution to the exact value.
A convergence study is carried out so as to ensure that the solutions to the problem are
convergent and to establish the optimum number of terms required in the deflection function
in order to obtain satisfactory results.

Tables 2 and 3 are the convergence patterns of the first four nondimensional frequency
parameters for the simply-supported and fully-clamped isotropic trupezoidal plates with
ratio b/a = 1/5 and 3/5. respectively. [t can be observed from the Tables 2 and 3 that it is
sufficient to take m = 20 to reuch stable convergence since m = 24 produces no drastic
change in the solutions compared with that obtained with m = 20.

The convergence patterns of the fundamental nondimensional frequency parameters
for the simply-supported and fully-clamped anisotropic trapezoidal plates are given in
Tables 4 and 5. The fundamental nondimensional frequency parameters are studied by

Table 2. Convergence pattern of the noadimensional frequency parameter \/ P = (wai2a) phi DY 3
of a simply-supported isotropic trapezoidal plate {@/c = 1LO)

Maode Number of terms, m

bla no. 4 % {2 {6 20 24
{ 6.67 6.02 6.02 6.01 6.01 6.01
15 2 20,01 13.03 [2.83 1273 12.71 12.69
f 3 20.19 19.08 15.48 15.46 15.34 15.34
4 37.64 35.77 22.63 22,53 21.82 2173
i 4.34 4.09 1.09 J.08 4.08 408
35 2 {1.95 9,42 9.0 594 893 £.91
' 3 13.75 13.52 {9 1117 1112 1.2
4 2136 0.08 17.67 [6.93 16.76 {672
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Table 3. Convergence pattern of the nondimensional frequency parameter \/E = (wa*/2n){ph DY'*
of a fully-clamped isotropic trapezoidal plate (aic = 1.0)

Mode Number of terms. m
ba no. 4 8 12 16 20 24
i 11.48 11.33 1t.33 11.33 11.32 11.32
s 2 24.18 19.92 19.46 19.45 19.45 19.45
3 25.55 23.99 233 2331 23.30 2330
4 39.84 37.94 3221 30.70 10.59 30.57
Iy 7.62 7.57 7.56 7.55 7.55 7.55
15 2 15.34 13.44 13.35 1335 13.34 {334
M 3 16.98 16.98 16.71 16.71 16.70 16.70
4 24.39 23155 22.58 2256 AR 2242

Table 4. Convergence pattern_of the fundamental nondimensional frequency par-
/5 29 / Ve P
ameter /A" = (wa*/InMph/ /D, D) * of a simply-supported boron-epoxy trap-
ezoidal plate (a/c = 1.0)

Angle Number of terms, m

hia s 4 8 12 i6 20
0 6.46 5.61 5.56 5.51 5.51

15 {5 682 5.89 5.85% 5.81 5.80
30 7.60 6.64 6.62 6.60 6.59

45 824 7.32 7.31 7.30 7.30

0 379 163 162 16t 16t

¥s s 4.24 4.06 4.05 4.05 4.04
v 0 5.09 4.85 4.83 4.83 483
45 5.64 5.34 5.33 533 533

Table 5. Coavergence pattern of the fundamental nondimensional frequency pur-
ameter \//l' = (wa’[2r)(ph /DD, )" ol fully-clamped boron epoxy trapezoidal
plate (a/c = 1.0}

Angle Number of terms, m

bja fin 4 8 12 16 20
0 12.26 10.45 9.72 9.43 9.43
s 15 12.4% 10.95 10.42 10.22 10.22
! k1] t3.02 1215 11.99 11.93 1193
45 13.58 13.30 13.30 13.29 13.29
0 1.59 7.51 7.48 147 7.47
378 5 7N 7.68 7.65 7.64 7.64
! 30 8.35 8.15 8.12 8.1t 8.11
45 894 §.84 .82 B8l LR

varying the number of terms m for different ratio /a = 1/§ and 3/5. The study shows that
stable and convergent results are obtained when nr = 16 1s used.

To optimize the usage of computational time and to obtain satisfactory results, m = 20
is used for the isotropic cases to calculate the first four nondimensional frequency parameters
and m = 16 is uscd for the anisotropic cases to compute the fundamental nondimensional
frequency parameters.

5.2. Numerical results

The nondimensional frequency parameters of the simply-supported isotropic trap-
ezoidal plate with different h/a ratio are given in Table 6. The ratio b/a = 0 is corresponding
to an isosceles triangular plate and bjo = 1 is a square plate. The present results are
compared with the values of Chopra and Durvasula (1971). Close agreement is seen to
exist between the present results and those of the Chopra and Durvasula (1971).
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Table 6. Comparison of the nondimensional frequency parameter \,:
= (wa® 2n)ph D)'* of a simply-supported isotropic trapezoidal plate

(ac=10)
Mode numbers

biu Reference I 2 3 4
0 Chopra 7.30 16.37 17.69 28.26
Present 7.30 16.32 17.64 28.43
s Chopra 6.01 12.68 15.38 21.46
o Present 6.0l 12.69 15.34 21.73
25 Chopra 4.90 10.17 1319 18.05
= Present 4.90 10.24 13.17 17.72
15 Chopra 4.08 8.91 114 16.74
! Present 4.08 8.91 112 16.72
45 Chopra 352 8.24 9.31 14.16
' Present 3.52 8.24 9.29 14.20
10 Chopra 34 7.85 7.85 12.57
' Present 304 7.84 7.84 12.59

The second set of results available for the comparison is the case for fully-clamped
isotropic trapezoidal plate. The nondimensional frequency parameters of the fully-clamped
trapezoidal plate together with the upper and lower bound solutions of Kuttler and Sigillito
(1981) are tabulated in Table 7. Since only the first two frequencies are published by Kuttler
and Sigillito, the present results are compared with these two values. The comparison shows
that the present solutions are within the upper and lower bound solutions of Kuttler and
Sigillito.

The variation of the nondimensional frequency parameters with different b/a ratios
forthe C S-S S, C-S C S, C-F F Fand C S F S isotropic trapezoidal plates is given
in Tables 8 -11. It is evident from the tables that the nondimensional frequency parameter
decreases with the increase in the /e ratio. This behavior is expected because with the
increase in the b/a ratio, the flexibility of the plate also increases.

To investigate the influence of the fibre orientation on the vibration behaviour of
trapezoidal pliates, the six examples are again analysed with different fixed ratio b/a. The
numerical results are presented graphically for the simply-supported, fully-clamped, C-S-
S-S, C-S-C-S, C-F-F -F and C-S-C-F trapczoidal plates with different fibre orientation
angle a varying from 0" to 90'.

Table 7. Comparison of the nondimensional frequency parameter \/A_ = (e’
2r)(phiDy"? of a fully-clamped isotropic trapezoidal plate (a/c = [.0)

Mode numbers

ba Reference 1 2 3 4
Kuttler (upper bounds) 13.73 25.41
0 Kuttler (lower bounds) 13.70 25.28
Present 13.73 25.40 26.98 39.46
Kuttler (upper bounds) 11.35 19.93
1/5 Kuttler (lower bounds) 11.31 19.77
Present 11.32 19.45 23.30 30.57
Kuttler (upper bounds) 9.23 15.63
2/5 Kuttler (lower bounds) 9.18 15.45
Present 9.22 15.59 19.87 24.55
Kuttler (upper bounds) 7.57 13.39
3/5 Kuttler (lower bounds) 7.52 13.27
Present 7.55 13.34 16.70 2242
Kuttler (upper bounds) 6.45 12.30
4/S Kuttler (lower bounds) 6.41 12.20
Present 6.44 12.27 13.88 19.44
Kuttler (upper bounds) 5.73 11.10
1.0 Kuttler (lower bounds) 5.72 1.61

Present 5.73 11.68 11.68 17.22
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Tabie 8. The nondimensional frequency parameter \/T
= (wa'2r)(ph.D)' * of a C-S-S-S isotropic trapezoidal
plate (a.c = 1.O)

Mode numbers

ba [ 2 3 4

0 9.02 18.93 20.21 RINvA!
ts 7.26 14.55 17.24 24.14
25 5.80 1.72 14.48 20.44
3s 4.80 10.40 11.94 18.16
45 3.16 9.73 9.81 15.34
1.0 3.76 8.21 9.34 13.71

Table 9. The nondimensional frequency parameter \//‘*_
= (wd*[2n)(ph/D)"* of a C-S—C-S isotropic trapezoidal
plate (a'c = 1.0)

Modc numbers
9

b.u l 2 3 4

0 9.02 1893 20.21 aun
L5 7.30 [4.83 17.25 2472
2.5 6.08 12.76 [4.49 2233
RN 5.35 11.83 12.04 18.78
45 4.90 10.10 11.34 16.44
1.0 4.61 8.70 11.03 15.05

Table 10, The nondimensional frequency paramcter \/i'
w (wd2r)(phi) of 0 C F F F isotropic trapezoidal
plate (a'c = 1.0)

Mode numbers

ba | 2 3 4

0 1.07 464 4.65 11.03
15 0.%2 3.53 3.88 9.20
25 0.70 266 3.67 7.31
35 0.64 206 3.56 6.20
4/5 0.59 1.65 3.48 5.46
10 0.55 1.36 3.39 4.36

Table 11, The nondimensional frequency parameter \/;'
= (wa*2n)(ph/D)' * of a C-S-F-§ isotropic trapezoidal
plate (g/c = 1.0)

Mode numbers

bla | 2 3 4
9.02 18.93 20.21 3Tl
1/5 7.23 14.36 17.24 23.14
25 5.53 9.83 14.48 1591
X5 392 7.08 11.83 13.15
4:5 2.75 5.89 9.03 12.11
1.0 2.02 5.27 6.63 10.05

The fundamental frequency parameters for the simply-supported anisotropic plate
with different fibre oricntation angles f§ at the fixed b/a ratios are given in Fig. 2. A maximum
frequency occurred at ff = 45" for the isosceles triangular plate (b/a = 0). For trapezoidal
plates with b/a = 0.2 and 0.4, both maximum frequencies occurred at f# =30°. The
maximum frequencies for the trapezoidal plate with b/a in the ranges from 0.6 to 1.0
occurred at f# = 457,

345 27:2-¢
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FREQUENCY PARAMETER /X
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Fig. 2. Variation of frequency parameter with respect to fibre orientation of a simply-supported
trapezoidal plate (a/c = 1.0).

The variation of the frequency parameters with respect to the fibre orientation of the
fully-clamped anisotropic trapezoidal plate is presented in Fig. 3. The maximum frequency
for the ratio bfa = 0 occurred at £ = 45°. When ratio b/a = 0.2 and 0.4, frequencies reach
maximum at ff = 30" and 15, Further increase in the ratio b/a from 0.4 to | and all
maximum frequencies arcat ff =07,

Figure 4 shows the results for the C-S S -8 anisotropic trapezoidal plate. For ratios
within the range 0 < A/a < 1.0, maximum frequencies occurred at i = 457, except for the
ratio bfa = 1.0 where the maximum value occurred at ff = 60,

The variation of the frequency parameters with respect to the fibre orientation of the
C -S-C-S anisotropic trapezoidal plate is given in Fig. 5. For the ratio b/u = 0-0.2, 0.4, 0.6
and 0.8-1.0, the maximum frequencies occur at ff = 45°, 60°, 75" and 90" which can be seen
from the figure.

All maximum frequencies occurred at ff =90 for the cantilevered anisotropic
trapezoidal plate with tixed ratio bja as shown in Fig. 6.

=
=
3
z
S
&
sF 3
st / i 4
by o1 b+ 08 AT
L o

0 l; 3‘0 L? 60 75 90
FIBRE  ORIENTATION B

Fig. 3. Variation of frequency parameter with respect to fibre orientation of a fully-clamped
trapezoidal plate (a/c = 1.0).
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Fig. 4. Variation of frequency parameter with respect to fibre orientation of a C-S-S-S trapezoidal
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plate (a/c = 1.0).
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The results for the C-S-F--§ anisotropic trapezoidal plate are given in Fig. 7. For ratio
hia =0-0.2, 0.4, 0.6 and 0.8-1.0, maximum frequencies occurred at ff =457, 307, 15”
and 0" which can be observed from the figure.
It can be concluded from the above investigation that the effect of fibre orientation on
the vibration frequency depends on the boundary conditions and the bfa ratio of the plates.

6. CONCLUSION

The paper has presented the free vibration studies of symmetrical isotropic and aniso-
tropic trapezoidal plates. The proposed method adopted the Rayleigh-Ritz energy approach
and employed the two-dimensional orthogonal plate functions as the admissible functions
to approximate the natural frequency of the trapezoidal plates with different combinations
of clamped, simply-supported and free edge support conditions.

FREQUENCY PARAMETER /%

Fig. 5. Variation of frequency parameter with respect to fibre orientation of a C-S—C-S trapezoidal
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Fig. 6. Variation of frequency parameter with respect to fibre orientation of a cantilevered trap-
ezoidal plate (a/c = 1.0).

Numerical results for six different edge supported trapezoidal plates are presented.
These values have been verified with the available literature results for the isotropic simply-
supported and fully-clamped trapezoidal plates. No comparison can be made for the iso-
tropic C-S-S-S, C-S-C-S, C-F-F-F and C-S-C-F trapczoidal plates because no results
for such cases arc available.

To show the effect of the fibre orientation on the vibrational behaviour of the trap-
ezoidal plates, the six plates previous study arc again analyzed with different angles of fibre
oricntation varying from zero to ninety degrees. The study shows that this effect depends
on the boundary conditions of the plate and the b/a ratio. This observation is particularly
important since composite plates are commonly used in modern technology nowadays. It
provides valuable information for rescarchers and engineers in design applications.
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